Classification of Incomplete Data Handling Techniques – An Overview

نویسنده

  • N. C. Vinod
چکیده

The task of classification with incomplete data is a complex phenomena and its performance depends upon the method selected for handling the missing data. Missing data occur in datasets when no data value is stored for an attribute / feature in the dataset. This paper provides a brief overview to the problem of incomplete data handling techniques and discusses the various methods used with classification and missing data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the Next State of Traffic by Data Mining Classification Techniques

Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...

متن کامل

An Empirical Comparison of Techniques for Handling Incomplete Data Using Decision Trees

OBJECTIVE: Increasing the awareness of how incomplete data affects learning and classification accuracy has led to increasing numbers of missing data techniques. This paper investigates the robustness and accuracy of seven popular techniques for tolerating incomplete training and test data for different patters of missing data; different proportions and mechanisms of missing data on resulting t...

متن کامل

Handling Incomplete Categorical Data for Supervised Learning

Classification is an important research topic in knowledge discovery. Most of the researches on classification concern that a complete dataset is given as a training dataset and the test data contain all values of attributes without missing. Unfortunately, incomplete data usually exist in real-world applications. In this paper, we propose new handling schemes of learning classification models f...

متن کامل

Machine Learning Techniques for Solving Classification Problems with Missing Input Data

Missing input data is a common drawback in many real-life pattern classification scenarios. The ability of missing data handling has become a fundamental requirement for pattern classification because an inappropriate treatment may cause large errors or false results on classification. The absence of certain values for relevant data attributes can seriously affect the accuracy of classification...

متن کامل

Review of preconcentration and solid phase extraction for the determination of trace Lead

Spectrometric techniques for the analysis of trace lead have developed rapidly due to the increasing need for accurate measurements at extremely low levels of this element in diverse matrices. This review covers separation and preconcentration procedures, and considers the features of the application with several spectrometric techniques. The use of an appropriate sample handling technique is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011